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Figure 1: Interpreting latent spaces from variational autoencoders trained on emoji images. (a) The user starts with summary metrics for
latent space variants, (b) then drills down to an overview distribution of a chosen latent space. (c) To map out a semantic relationship, the
user defines an attribute vector, examines the custom projection to the vector axis, applies analogies and assesses the relationship uncertainty.

Abstract
Latent spaces—reduced-dimensionality vector space embeddings of data, fit via machine learning—have been shown to capture
interesting semantic properties and support data analysis and synthesis within a domain. Interpretation of latent spaces is
challenging because prior knowledge, sometimes subtle and implicit, is essential to the process. We contribute methods for
“latent space cartography”, the process of mapping and comparing meaningful semantic dimensions within latent spaces. We
first perform a literature survey of relevant machine learning, natural language processing, and scientific research to distill
common tasks and propose a workflow process. Next, we present an integrated visual analysis system for supporting this
workflow, enabling users to discover, define, and verify meaningful relationships among data points, encoded within latent space
dimensions. Three case studies demonstrate how users of our system can compare latent space variants in image generation,
challenge existing findings on cancer transcriptomes, and assess a word embedding benchmark.

CCS Concepts
• Human-centered computing → Visualization; Visual analytics;

1. Introduction

A central goal of unsupervised machine learning is to distill un-
labeled data into more useful and ideally meaningful data repre-
sentations. In Natural Language Processing (NLP), state-of-the-art
applications often depend on word embeddings: vector representa-
tions of words learned from unlabeled text corpora. In generative
modeling, methods like variational autoencoders (VAEs) [KW13]
and generative adversarial networks (GANs) [GPAM∗14] create la-
tent spaces for modeling and synthesis of data [CN17].

Despite arising from different algorithms serving distinct pur-
poses, these representations are all vector spaces of reduced dimen-
sionality (relative to the input), intended to produce more general
features that helpfully characterize the input. These representations
are often referred to as latent spaces. Latent spaces are important
mainly in two aspects. First, they can provide insights into the data,
sometimes revealing important relationships we are unaware of.
For instance, linguists analyze word embeddings to understand how
words change meaning over time [HLJ16], and scientists use latent
spaces to assist discovery of new biological pathways in ovarian
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cancer [WG18]. Second, latent spaces can serve as feature spaces
for downstream machine learning applications, including classifiers
and other supervised predictors. In both cases, interpretation of la-
tent spaces can assist the evaluation of models, help explain model
performance, and more generally aid understanding of what, ex-
actly, a model has “learned”. Interpretation is especially critical
when evaluating models for which we lack ground truth data.

Interpretation of latent spaces often requires subtle and im-
plicit domain knowledge, for which human judgment is essential.
This human-centric nature makes visual analysis methods attrac-
tive. Currently, most examples in the literature rely on static, ad-
hoc visualizations. Several interactive tools exist [LBT∗18, HG18,
STN∗16, LNH∗18], but they either focus on a specific domain and
a narrow set of tasks, or tackle each task separately without com-
bining them into an integrated tool. We seek to guide users through
a comprehensive workflow that supports tasks common to latent
spaces across various input data types and learning algorithms.

In this paper, we contribute methods for latent space cartog-
raphy (LSC), the process of mapping and comparing meaningful
semantic dimensions within the latent space. We first survey the
literature across a range of research communities and bring to-
gether common interpretation tasks. We then integrate these tasks
into a visual analysis system that enables users to quickly discover,
define, and validate semantic relationships (or attribute vectors)
within the latent space. We augment the system with additional
novel methods to provide context, assess relationship uncertainty,
and compare relationships. We explore use case scenarios for mul-
tiple data types, including image generation of emojis, scientific
feature learning for cancer genomics, and word embeddings. Using
LSC, we find a better justified interpretation of a scientific dataset
that leads to potential new discoveries, and shed light on nuances
overlooked by a state-of-the-art NLP test benchmark.

In summary, we contribute (1) a review of domain literature and
a characterization of common latent-space interpretation goals and
tasks; (2) a visual analysis system that supports these tasks, includ-
ing novel projection strategies, visual and statistical methods to as-
sess attribute vector uncertainty, and global attribute vector com-
parison methods; and (3) three case studies demonstrating new in-
sights into diverse data types across multiple domains.

2. Background

We introduce the notion of latent spaces using two prominent ex-
amples: word embeddings and generative network models.

Word Embeddings. Word embeddings represent words as real-
valued vectors, typically with 50 to 300 dimensions. A training al-
gorithm, such as word2vec [MSC∗13] or GloVe [PSM14], takes a
large text corpus as input. After preprocessing, the algorithm con-
structs a co-occurrence matrix which encodes the probability of
two words appearing in the same context. It then employs vari-
ous strategies (e.g., matrix factorization) to produce an embedding
that preserves co-occurence information. The embeddings are used
in various NLP applications, including parsing [SBMN13], named
entity recognition [TRB10], and sentiment analysis [MDP∗11].

As word embeddings are optimized for co-occurence informa-
tion, words that frequently appear in similar contexts usually have

similar vectors. Vector space coordinates may encode syntactic
similarity (run, running), semantic similarity (large, big) or re-
latedness (coffee, cup) [HRK15, FGM∗01, BTB14]. Additionally,
word embeddings display intriguing linear regularities commonly
referred to as analogies [MYZ13]. A canonical example shows that
the vector(king) - vector(man) + vector(woman) produces a vector
very close to vector(queen). This simple algebraic operation illus-
trates that a particular relationship might have a constant vector off-
set in the space. This vector offset is also called an attribute vector
and the algebraic operation is called attribute vector arithmetic.

Latent Spaces in Generative Modeling. Generative models
are able to synthesize realistic outputs resembling observed data
after being trained on real examples. The variational autoen-
coder (VAE) [KW13] is a prominent generative modeling method.
VAEs consist of two networks: an encoder to map an input datum to
a latent vector, and a decoder to map a latent vector back to the in-
put space. The training objective seeks to minimize the reconstruc-
tion error (how accurately a decoded example matches the original
input) and the Kullback-Leibler divergence (how closely the latent
variables follow a probability distribution) simultaneously.

Though the explicit objective of VAE is to generate realistic ex-
amples, it produces latent representations that can capture salient
information about the data. Akin to word embeddings, these la-
tent spaces are continuous multi-dimensional vector spaces. Re-
searchers have found that similar analogical relationships exist in
these latent spaces [RMC15]. That said, these generative models
differ from word embeddings in an important way: while there only
exists a one-way mapping from words to latent vectors in word em-
beddings, a VAE decoder can convert any latent vector to a recon-
structed example, enabling synthesis of new instances.

3. Related Work

We draw on multi-dimensional data visualization techniques and
explore the design space for visualizing latent spaces.

3.1. Visualizing Multi-dimensional Data

Dimensionality reduction techniques are common for visualizing
multi-dimensional latent spaces. t-Distributed Stochastic Neighbor
Embedding (t-SNE) [VdMH08] and Principal Component Analy-
sis (PCA) [Jol11] are among the most popular methods, while Uni-
form Manifold Approximation and Projection (UMAP) [MH18] is
a more recent alternative. t-SNE is a non-linear technique that aims
to match neighbors in the original space to those in the lower di-
mensional embedding. Recent work has extended t-SNE to acceler-
ate computation [VDM14,PMH∗18], visualize non-metric similar-
ities [VdMH12], and trade off accuracy for interactivity [PHL∗16,
PLVDM∗17]. UMAP is another non-linear technique that better
preserves inter-cluster relationships. These non-linear algorithms
highlight cluster structures, but can obscure linear relationships
among points. PCA is a linear transformation and so preserves lin-
ear relationships. Other popular multi-dimensional data visualiza-
tion techniques, for instance scatter plot matrices [CLNL87] and
parallel coordinates [ID90], are less relevant because neither the
axes of a latent space nor the values along a latent space axis have
intrinsic meaning. We use t-SNE, UMAP, and PCA in this paper.
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Previous work has also proposed custom projection methods.
Interaxis [KCPE16] and Explainers [Gle13] allow users to de-
fine semantic axes and subsequently project data points onto the
axes. Applying this idea to word embeddings, related work [HG18,
BCZ∗16a, BCZ∗16b] has mapped a set of words to two user-
defined concept axes. We similarly enable users to construct a se-
mantic axis from two opposing concepts, but unlike methods that
simply layout two user-defined axes, we provide additional projec-
tion strategies to ensure orthogonality and highlight variations. Liu
et al. [LBT∗18] propose two projection schemes combining Sup-
port Vector Machines (SVM) and regularization, or SVM and PCA,
to better visualize analogy pairs in word embeddings.

3.2. Visualizing Latent Spaces

The research literature involving latent spaces often employs
visualizations for qualitative evaluation. Most of these visual-
izations are 2D scatter plots, using two intrinsic latent dimen-
sions directly [Wet17, MNG17, YHSBK17], axes from dimen-
sionality reduction techniques such as t-SNE (e.g., [TWR∗17,
JYY∗16, HSSQ17, MKS∗15, YSD∗18]) or PCA (e.g., [SRM∗16,
MSSW16,UFDR16,FSBL17,GBWD∗18]), or axes of custom pro-
jections [BCZ∗16a, BCZ∗16b]. Alternatively, some papers show
a 2D grid of reconstructed examples [DTD∗18, JBJ18, ZSE17,
KPHL17]. These visualizations are typically ad-hoc and static.

Researchers have also developed interactive visual analysis tools
for latent spaces [STN∗16, JSL∗17, HG18, LBT∗18, LNH∗18].
Some tools focus on a subset of tasks [STN∗16, LBT∗18] in word
embeddings, which we extend and bring to a broader range of la-
tent spaces. Heimerl and Gleicher [HG18] catalog domain-specific
tasks for word embeddings and propose separate designs for each
task. We similarly perform a task analysis to include more diverse
venues, and instead of tackling each task separately, we build our
system to support an integrated workflow. Finally, our work is di-
rectly inspired by the article by Carter and Nielsen [CN17] that
discusses semantic dimensions and applications of latent spaces.

More broadly, our work relates to the literature on visual analy-
sis of neural networks (see [HKPC18] for a survey). Previous work
has contributed techniques and systems to visualize hidden lay-
ers [ZF14, LSL∗17], training process [LSC∗18, PHVG∗18], model
architecture [WSW∗18] and supervised learning results [RAL∗17].
Analyzing these aspects of the neural network are complementary
to our focus on understanding latent spaces.

4. Goals, Tasks, and Workflow

Our design goal is to support model users in interpreting latent
spaces. Our primary target audience consists of end users of ma-
chine learning (ML) tools, capable of data science work but not
necessarily developers of ML tools. We desire a general system
that supports latent spaces from generative models and word em-
beddings, across various domains, so long as the goal is to map
semantically meaningful relationships within a vector space repre-
sentation of data. To provide guidance to model users and bring
together techniques across multiple fields, we perform a structured
literature review to understand common practices adopted by do-
main experts in understanding and evaluating latent spaces.

We started the literature search on arXiv [ArX], an interdisci-
plinary archive for diverse research communities. We searched us-
ing algorithm keywords, excluded irrelevant articles, and sampled a
subset due to the vast quantity of papers. Following this procedure,
we arrived at 78 papers from a wide range of publication venues,
including 44 papers from ML, artificial intelligence, and computer
vision related conferences and journals, 27 from NLP, and 7 from
scientific fields such as Physics, Astronomy, and Biology (the de-
tailed protocol and all surveyed articles are in the supplemental ma-
terial). We analyzed these articles using an iterative coding method
to catalog the goals and tasks in interpreting latent spaces.

4.1. Uses and Interpretation Goals

The domain literature uses latent spaces for various purposes:

• Improve downstream tasks. Some articles employ latent spaces
as an intermediate step to improve downstream task perfor-
mance. For instance, latent spaces can provide robust features
to aid classification in semi-supervised learning, where only a
small subset of observations have labels (e.g., [KMRW14]).
• Enable synthesis. Articles on generative applications utilize la-

tent spaces to synthesize specific types of outputs. Examples in-
clude synthesizing images [YYSL16], sentences [JZS17], mu-
sic [HNP17], and molecules [JBJ18].
• Understand data. Researchers leverage latent spaces to iden-

tify valuable relationships, enhancing their understanding of the
data and potentially leading to new discoveries. Examples in-
clude identifying cancer-associated genes [WG18] and quantify-
ing shifts in word meaning [HLJ16].
• Unspecified. The remaining articles, typically proposing new un-

supervised algorithms, make no assumption on how the learned
latent spaces will be used.

In addition to simply involving latent spaces as an algorithmic
component, the articles we reviewed all seek to further understand
and compare latent spaces. We identify three high-level goals guid-
ing the interpretation process:

• Evaluate model. Researchers use evidence from latent spaces to
compare and evaluate proposed algorithms. Most notably, un-
supervised algorithms often lack an ultimate task to evaluate
against. Therefore, researchers routinely rely on intrinsic eval-
uation—methods that gauge a latent space using information
within the space itself—to evaluate unsupervised models.
• Explain model. Researchers examine the internal working of la-

tent spaces to explain (or, at least, gain intuitions of) the model.
For instance, some papers use discriminative clustering in latent
spaces—whether different classes form distinct clusters—to ex-
plain the overall classification performance (e.g., [ADvdH17]).
• Understand data. Researchers explore latent spaces to under-

stand the underlying structures in the data. They may find
that clusters in the latent space reflect galaxy population bi-
modality [FSBL17], or the cosine similarity between the same
words from different embeddings trained on different corpora
signifies a change in word meaning [HLJ16].

During interpretation, researchers are interested in various as-
pects of the latent spaces. A recurring concern is that latent spaces
organize information in a meaningful rather than random manner.
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For instance, researchers might show that interpolation produces
semantically meaningful sequences. They might also show that
similar items appear in closer proximity in the embedding and that
intriguing regularities such as analogical relationships exist in the
space. Besides interpretability, researchers also verify other math-
ematical properties. They may ask if a continuous latent space is
smooth, as abrupt transitions are considered a sign of memoriza-
tion [RMC15]. Some projects verify specific properties or diagnos-
tics, for instance the absence of a “posterior-collapse” [MSSW16]
in which some latent dimensions have zero weights.

4.2. Tasks and Improvements

We describe six interpretation sub-tasks appearing most frequently
in the domain literature. As the types of latent spaces affect tasks,
we report frequency counts separately for word embeddings (24 in
total) and latent spaces in generative models (54 in total).

T1: View Reconstruction Examples. A majority of articles on
generative models (31/54) present a list of example generation re-
sults. These examples serve as qualitative evidence that the mod-
els produce compelling, plausible, yet novel outputs unseen in the
training data. They also show reconstruction fidelity versus gener-
ation diversity, as there is usually a trade-off between the two.

T2: View Interpolation Results. Linear interpolation in a con-
tinuous latent space is done by following a path between two points
and displaying outputs at sampled locations on the path (usually in
steps of equal distance). A number of articles (18/54) adopt this ap-
proach. Interpolation sequences naturally show the smoothness of
the latent space, and they are important indicators of interpretabil-
ity. For instance, authors may point out subtle changes in transitions
that reflect deeper domain-specific principles [CN17].

T3: Examine Nearest Neighbors. This task is employed by ar-
ticles on both word embeddings (10/24) and generative models
(6/54), but the emphasis is different. Word embedding articles use
anecdotal nearest neighbors to qualitatively show what the algo-
rithms manage to achieve. Articles on generative models use near-
est neighbors from the training set as a comparison, demonstrating
that the algorithms generate novel results indistinguishable from,
or better than, the input.

T4: Perform Attribute Vector Arithmetic. An example of this
task for word embeddings shows that the vector(king) - vector(man)
+ vector(woman) produces a vector very close to vector(queen).
This simple algebraic operation demonstrates that pairs of data
points sharing a particular relationship have approximately con-
stant vector offsets. We observe this task in both generative (3/54)
and word embedding (10/24) models.

T5: Compare Similarities. This task is popular for benchmarks
of word embeddings (13/24), testing how well the cosine similarity
between word vectors matches ratings from human annotators.

T6: Visualize Distribution. Researchers visualize latent spaces
using various means described in §3. This task is common to both
generative (20/54) and word embedding (7/24) settings.

We augment the interpretation sub-tasks above by adding three
improvements to cover potential blind spots in the literature and
address deeper questions about semantic relationships:

Activity Description
Compare variants Compare latent space variants using quantitative metrics. (T4, T5)
Examine overview Select a latent space and view the projected data distribution. (T6)
Define relationship Define an attribute vector as an externalized relationship.
Examine relationship View data distribution relative to the attribute vector. (T6)
Assess interpolation View interpolation along the attribute vector. (T1, T2, T3, S1)
Assess analogies Perform attribute vector arithmetic. (T3, T4, S1)
Assess saliency Assess if the attribute vector represents a salient relationship. (S2)
Compare relationships Examine how multiple attribute vectors relate. (S3)

Latent Space Interpretation Workflow

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Figure 2: A workflow for latent space interpretation. Background
loops signify that all activities may be iteratively performed.

• S1: Contextualize interpretation sub-tasks. While visualizing
data distribution (T6) provides useful context for other tasks (for
instance showing where an interpolation (T2) sequence occurs
or whether attribute vector arithmetic (T4) only works in certain
subspaces), such aspects are rarely combined in prior work. We
aim to contextualize interpretation tasks whenever possible.
• S2: Assess relationship strength. While domain literature rou-

tinely assigns linear vectors to semantic relationships (e.g., T4),
the “strength”, or saliency, of such mapping is often overlooked.
We hope to assess whether a linear vector captures a salient
human-interpretable relationship.
• S3: Compare multiple relationships. Interpreting latent spaces

can be viewed as mapping the machine-learned vector space to a
human-friendly vector space where the axes correspond to mean-
ingful relationships. To this end, we would like to enable users
to judge how multiple semantic relationships relate.

4.3. Workflow

To integrate tasks T1-T6 and improvements S1-S3, we propose an
analysis workflow to guide users through latent space interpreta-
tion (Figure 2). The workflow starts with summary metrics for one
or more fitted latent space variants, then drills down to in-depth
exploration of a selected latent space. As interpretation may be an
iterative process – and not all tasks may apply in all cases – users
should be free to skip, repeat, or return to previous activities. Our
LSC system design is intended to support this workflow.

To demonstrate that LSC is generic to both generative models
and word embeddings across multiple domains, we include built-in
support for three data types: generative models of images, genera-
tive models of arbitrary numerical vectors, and word embeddings
for text. That said, LSC is extensible to support other types of in-
put data by implementing an appropriate rendering module. For in-
stance, we could extend the tool to support audio data by imple-
menting a waveform visualization with audio playback support.

5. System Walkthrough

We present our LSC workflow, features, and design choices in a
usage scenario where Jimmy, a non-expert user of ML tools, uses
our system to explore latent spaces of VAEs trained on emoji im-
ages. During the walkthrough, we note important distinctions to
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other data types (e.g., word embeddings), and elaborate on these
details in §6. Other details on visual encodings, interactions, and
mathematical definitions are available as supplemental material.

Jimmy is enthusiastic about design and deep learning. Upon
reading an article [CN17] introducing how VAEs learn meaning-
ful relationships, he is excited that a VAE might help him explore
discrepancies in emoji styles across platforms and offer design in-
spiration for creating new emojis. To start, he crawls 24,000 emoji
images from Emojipedia [Emo], which includes emojis from var-
ious platforms (e.g., Apple, Google) and versions. After prepro-
cessing, he trains multiple convolutional variational autoencoders
using the same architecture, but he varies the number of latent di-
mensions as a hyper-parameter. From this process, Jimmy ends up
with several latent spaces with differing dimensions. He now wants
to discover and validate relationships in these vector spaces. Does
the model learn meaningful semantics? Might it discover underly-
ing design principles? How do results vary based on the dimen-
sionality of the space? To answer these questions, Jimmy starts an
exploratory analysis in LSC.

5.1. Initial Comparison

Jimmy wants to choose the best candidate latent space to initially
analyze. Upon loading data, he lands on a summary page showing
a few preliminary metrics. Seeing that the validation loss starts to
plateau at dimension 32, he decides to focus on this dimension.

At the beginning of the interpretation workflow, LSC lists sev-
eral quantitative metrics to facilitate initial comparison. For gen-
erative models, we show validation loss and the distribution of
data on initial latent axes (Figure 1a), which helps to detect po-
tential “posterior collapse” problems [MSSW16]. For word embed-
dings, we leverage existing similarity (T4) and analogy (T5) bench-
marks in the NLP community, namely WordSim-353 [FGM∗01],
SimLex-999 [HRK15], MEN [BTB14], and Google’s analogy
dataset [MYZ13]. These summary results give users an initial qual-
ity judgment, helping them choose a reasonable latent space for an
in-depth exploration.

5.2. Vector Space Overview

After selecting the 32-dimensional latent space, Jimmy enters an
overview page showing how emojis distribute within the space. See-
ing the apparent clustering structures, he brushes and hovers to
inspect what emojis lie inside a cluster.

Once users decide to focus on a latent space, LSC visualizes an
overview (T6) to orient them for further exploration. LSC shows a
2D t-SNE scatter plot by default (Figure 1b, Figure 3a). We choose
t-SNE because it prioritizes cluster structures within the data, and
these clusters reveal how the latent space learns and organizes in-
formation. For example, one might use prior knowledge and meta-
data labels to judge if a cluster is meaningful, answering questions
such as “does the latent space group emojis based on platforms
(e.g., Google versus Apple), content (e.g., faces versus flags), color,
or shape?” Similarly, UMAP projection (Figure 3b) is available as
an alternative. Besides the non-linear projections, LSC also sup-
ports PCA. PCA enables users to examine salient linear dimensions

(a) (b) (c)
Figure 3: Vector space overview. We apply (a) t-SNE, (b) UMAP,
and (c) PCA to visualize sample distributions. Here each dot rep-
resents an emoji image, colored by its average pixel color.

A

B

…

C
D

…
Example emojis around (C) Example emojis around (D)Figure 4: Attribute vector view. Samples (a) are projected onto the

attribute vector dimension. By default, the x-axis is the attribute
vector direction and the y-axis is the largest principal component of
the remaining dimensions. The attribute vector (b) is plotted along
with the convex hulls of the starting (c) and ending (d) concepts.
We show interpolation results where applicable.

in the data free of the distortions of t-SNE and UMAP. For example,
the first two principal components in Figure 3c show that silhouette
and color dimensions contribute to the largest variations in emojis.

5.3. Attribute Vector Mapping

As he gains initial familiarity with the vector space, Jimmy begins
to formulate more specific questions. He notes that Android version
9 adopts a distinct style for face emojis compared to its earlier
versions . He wants to understand if the latent space is sensitive
to this trend, so he proceeds to define an attribute vector.

As users explore and discover meaningful relationships, LSC
enables users to externalize such relationships as attribute vec-
tors. To define an attribute vector, users first collect examples from
two opposing concepts that constitute the relationship. They might
rely on existing metadata labels (e.g., all Apple emojis containing
“woman” in their names), or interactively group samples when ex-
ploring the vector space overview (e.g., all emojis within a cluster
in t-SNE). The attribute vector is then defined according to the end-
points of the centroids of the two opposing concepts.

Jimmy creates an attribute vector that transitions from examples
like to examples like . He selects the attribute vector
to enter a view where all emojis are projected, using the attribute
vector as a primary axis. He explores the space to understand how
emojis distribute along the spectrum of the two styles.
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A

B

C

Figure 5: Analogy. An analogy vector (a) is obtained by adding the
attribute vector (b) to an emoji example. In (c), the nearest neighbor
in the training data is shown beside each reconstructed result.

Figure 6: Pair alignment to assess relationship saliency. We com-
pare a histogram of pairwise cosine distances between attribute
pairs to a background distribution of random pairs. We standardize
the unit using pooled standard deviation.

Once a user creates an attribute vector, we offer a new perspec-
tive to explore the latent space, treating the attribute vector as a di-
mension. The user might assess how other samples distribute in the
spectrum: what examples are considered more similar to one con-
cept than the other in the latent space? Essentially, we assume the
relationship manifests as a linear structure within the latent space.

To this end, LSC performs a custom projection (T6) onto the
attribute vector (Figure 4a). By default, the x-axis is the direction
of the attribute vector and the y-axis is the first principal component
(largest eigenvector) of the remaining dimensions. Unlike previous
methods that project onto two attribute vectors, we ensure that the
two axes are orthogonal in the original space, thus avoiding angle
distortions (supporting math is supplemental material). The default
y-axis highlights variations in data, but users are free to map the
y-axis to other metadata fields, for instance grouping samples by
category to inspect the distribution within each category.

“How about generation quality? Might the model create a series
of emojis that transition from one style to another?” With these
thoughts, Jimmy inspects the interpolation sequence.

We interpolate (T2) along the attribute vector where applica-
ble (Figure 4b), showing reconstructed examples (T1) at constant
steps along the line. We also show the nearest neighbor (T3) in
the training set beside each generated image as a comparison (Fig-
ure 5c). Together, these operations allow users to gauge reconstruc-
tion quality and verify geometric (e.g., abrupt transitions) and se-
mantic (e.g., meaningful transitions) properties. The interpolation
sequence is plotted in the custom projection (S1), making it pos-
sible to take into account the surrounding data distribution when
reasoning about the results.

While the style changes as expected for the averaged examples,
Jimmy wonders how the model applies the style transformation to
other emojis. He picks and applies the attribute vector.

Using LSC, a user can verify how well an attribute vector ap-
plies to an arbitrary sample (Figure 5). One can pick an example in
the projected view and ask LSC to perform attribute vector arith-
metic (T4): add or subtract the attribute vector from the sample.
They can then observe if the result matches their expectations and
thereby better understand how the latent space encodes informa-
tion. LSC draws the resulting vector in the projected data distri-
bution (S1), making it easy to answer questions such as “does the
analogy work only for points near the starting convex hull?”.

We display different results depending on the types of latent
spaces. For generative models of image data, we show interpolated
examples (T2). As word embeddings lack the backward mapping
from an arbitrary latent vector to a word, we list the top-k nearest
neighbors (T3) of the start and end locations (Figure 14).

Now Jimmy would like to know if this attribute vector reliably rep-
resents a salient relationship. He examines the convex hulls and
reasons about the pairwise cosine similarity plot.

Next, we enable users to assess the consistency and saliency of
the linear relationship captured by the attribute vector (S2). First,
LSC visualizes the projected convex hulls alongside the attribute
vector (Figure 4). It plots convex hulls enclosing examples in two
concepts (purple and yellow) and all possible pairs between indi-
vidual examples (gray). While the attribute vector is essentially an
average of the relationship, the convex hulls serve as an uncertainty
measure, indicating the “spread” of the individual pairs.

Though the convex hulls intuitively illustrate how well-aligned
the individual pairs are, they are still dependent on the projection
method. To complement this, LSC visualizes pair alignment in the
original space. We adopt a relative formulation, comparing align-
ment of pairs within the attribute vector to random pairs. As shown
in Figure 6, we first visualize the distribution of pairwise cosine
similarities between pairs defining the attribute vector. We then col-
lect a large number of pairs between random examples and plot
their pairwise cosine similarity. Well-separated distributions imply
that the attribute vector captures a salient relationship difficult to
observe by random chance. To enable comparison of a single at-
tribute vector across latent space variants as well as the relative
“strength” of attribute vectors within the same latent space, we fur-
ther standardize the unit as Cohen’s d, using pooled standard devi-
ation. This choice ensures robust comparisons across latent spaces,
as average cosine similarities decrease with higher dimensionality.

5.4. Comparing Attribute Vectors

Jimmy goes on to investigate more attribute vectors. As the vectors
accumulate, he wonders how they relate. He views the vectors in
several global projections and checks their orthogonality.

Given a set of attribute vectors, we provide multiple means for
users to evaluate how they relate (S3). First, we support visualizing
the attribute vectors globally in any available projection (Figure 7).
Projecting attribute vectors to a linear projection such as PCA or

c© 2019 The Author(s)
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(a)

(b) (c) (d)
Figure 7: Visualizing attribute vectors in a global view, including
(a) t-SNE, (b) UMAP, (c) PCA and (d) attribute vector projection.

Attribute 
Vector

Man 
Wearing 

Tuban

Man 
Health 

Worker

Man 
Dancing

Man

Man 
Pilot

(b)

(a)

Figure 8: (a) An attribute vector between man and woman faces.
(b) Applying the attribute vector to man emojis often “grows” the
hair, but fails for faces without shoulders or full-body views.

our custom projection is straightforward, as we simply apply the
projection transformation to the vector. For non-linear projections,
we approximate the path of an attribute vector. We (1) sample along
the attribute vector in the original high-dimensional space to obtain
control points, (2) project the control points into the 2D embedding,
and (3) render a Catmull–Rom spline [CR74] along the projected
control points. UMAP supports step (2) as it can map new points to
an existing embedding, but t-SNE lacks such support. We approxi-
mate projected control point positions in t-SNE embeddings using
a weighted nearest neighbor approach. Specifically, we first obtain
k nearest neighbors of a control point in the original space. These
nearest neighbors are existing data points, so we can obtain their
coordinates in the 2D embedding. We then compute a weighted av-
erage, where the weight is the inverse of the distance between a
neighbor point and the control point. We use this weighted average
as the coordinate of the projected control point in 2D. More math-
ematical details are provided in §2.2 of the supplemental material.

Next, we assist users in evaluating the relative similarity and or-
thogonality of the attribute vectors, by showing the cosine similar-
ity between attribute vectors. Since attribute vectors represent lin-
ear relationships, orthogonal vectors represent independent dimen-
sions that do not vary together. These semantic dimensions might
ultimately become axes to re-orient the latent space.

5.5. Cross-Model Assessment

Now Jimmy feels that he has explored enough of the 32 dimensional
space. He returns to the summary page to see how the attribute
vectors hold up across models.

We treat attribute vector sets as a user-defined evaluation metric.
In the summary page, in addition to initial automated assessments,
we supply quality measures of all the attribute vectors in each latent
space. For these quantitative summary scores of attribute vectors,
we use Cohen’s d values indicating pair alignment within an at-
tribute vector as described before. Users might use the summary to
compare latent spaces, identify a potentially different space variant,
or start a new iteration of exploration. We also allow users to export
attribute vectors for use in external analysis tools.

6. Case Studies

We demonstrate LSC in case studies for diverse domains, providing
insights for one novel application (emojis) and two drawn from the
literature (cancer transcriptomes and word embeddings).

6.1. Case Study: Emojis (Generative Image Analysis)

We present insights discovered by external users—students from a
visualization class—during their exploration of the emoji dataset
described in §5. These examples demonstrate how LSC supports
interpretation goals toward explaining (what does the model really
learn?) and evaluating (which model is best for synthesis?) models.

What does the latent space learn about gender?

Julia creates an attribute vector that transitions emojis depict-
ing a male face to those depicting a female (Figure 8a). Figure 8b
shows interpolation sequences (T2) that she explores. Observing
how the attribute vector turns an averaged male face into female,
she hypothesizes that the latent space encodes gender differences
as the length of the hair. Applying the attribute vector (T4) to other
emojis of a man’s face generally work as expected. For example, in-
terpolating from Man Health Worker correctly grows the hair. The
analogical relationship also holds for slightly more complex emojis
such as Man Wearing Turban and Man Pilot. Note that the trans-
formation does not touch irrelevant properties (e.g., the turban).

Julia also finds surprising cases where the analogy breaks. While
she expects that it is easy to turn the simple emoji Man into its
female counterpart, the emoji remains practically unchanged by the
attribute vector. The attribute vector also fails to transform a full-
body view like Man Dancing. She generalizes from these failure
cases that the latent space does not represent gender stereotypes
or hair length in any semantic sense, but instead simply adds dark
pixels to specific locations of the image.
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Figure 9: Comparing an attribute vector across latent spaces. The
attribute vector adds an outline stroke to smileys. The relationship
begins to be entangled with other image properties (e.g., the color
or shape) when applied to a cookie emoji in lower dimensions.

How does an attribute vector hold up across latent space variants?

Jane notices that Microsoft emojis have a distinctive style: most
have a thick, black outline stroke. In contrast, Twitter emojis lack
such outline. She defines an attribute vector between smileys from
these two platforms (Figure 9). She then applies the attribute vec-
tor (T4) to various samples to verify that this relationship, namely
adding an outline stroke, holds in different locations inside the la-
tent space (S1). In the 32-dimensional space that she starts with,
this attribute vector successfully transforms examples as expected.

She then uses this attribute vector to evaluate other latent spaces.
She switches to 16-, 8-, and 4-dimensional spaces and applies the
attribute vector to the same example, Cookie. She observes pro-
gressive degradation in interpolation results (T2) as the dimen-
sionality decreases. In the 16-dimensional space, despite correctly
adding the outline stroke, the transition affects other irrelevant im-
age properties: the reconstructed cookies fail to maintain a constant
color. The 8-dimensional space confuses the black stroke with sur-
rounding shadows, and the 4-dimensional space even produces a
rectangle. Note that in these latent spaces, the averaged attribute
vector itself still works reasonably well, suggesting that the lower-
dimensional spaces capture the relationship locally but can not allo-
cate an orthogonal linear dimension for encoding this relationship.

6.2. Case Study: Cancer Transcriptomes

A meaningful latent space learned by unsupervised algorithms
could be a powerful tool to assist scientific discovery [CN17]. Way
and Greene [WG18] analyze a latent space of gene expression data
for cancer patients, fit using a VAE, hoping to discover new bio-
logical pathways. One of their goals is to find the genes most dif-
ferentially expressed in high grade serous ovarian cancer subtypes.
To achieve this goal, they compute the average of samples in each
cancer subtype and subtract the averages of two subtypes to obtain
an attribute vector. They then identify the single latent dimension
corresponding to the largest attribute vector component, inspect the
associated decoder weights, and perform subsequent analysis. The
fixation on individual latent dimensions is problematic, as simply

Figure 10: Re-analyzing a latent space of gene expression profiles
of cancer patients, fit using a VAE by [WG18].

rotating the latent space and updating the decoder will produce
identical results, yet with different latent space dimensions — latent
space dimensions may be arbitrarily oriented.

Here, we present how LSC can support interpreting biological la-
tent spaces to understand data and assist scientific discovery (Fig-
ure 10). We first define an attribute vector connecting samples in
two ovarian cancer subtypes, differentiated and proliferative. We
then view the projection onto the attribute vector axis (T6). We use
the filter feature to include only relevant samples and change the y-
axis of the projection to a categorical field that labels ovarian cancer
subtypes (Figure 11a). In the updated projection (Figure 11b), we
confirm that samples in differentiated and proliferative subtypes are
well separated along the attribute vector axis. We repeat this proce-
dure for the other two subtypes, mesenchymal and immunoreactive.
Following the workflow of LSC naturally circumvents the pitfall of
fixating on individual latent axes.

As the input to the VAE are gene expression profiles with 5,000
dimensions, LSC uses methods to visualize abstract vector input.
To show details for a specific patient, LSC renders a heatmap of
gene expression levels (Figure 10). In the attribute vector view, LSC
lists the genes that are most differentially expressed in one concept
versus another (T4, Figure 11c). We obtain this list using quantile-
based thresholding, selecting genes 2.5 standard deviations from
the mean (details in supplemental material). LSC can export this
gene list (Figure 11d) in CSV format for further analysis.

We examined the overlap between our resulting gene lists and
those in prior work [WG18]. The agreement is poor, including mul-
tiple cases with a null intersection. We performed pathway analyses
on the gene list and the results show interesting differences, point-
ing to new biological pathways of potential relevance to cancer sub-
types. As we do not have resources to further confirm the results,
we shared our analysis with the authors of [WG18] to obtain their
feedback. These domain experts agreed that our analysis approach
using LSC is correct and responded enthusiastically to the tool.

6.3. Case Study: Word Embeddings

We now demonstrate two analysis scenarios for word embed-
dings. We first show that with a few simple interactions, our sys-
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Figure 11: Analysis of an attribute vector between two high grade serous ovarian cancer subtypes, differentiated and proliferative. We
change the y-axis (a) of the projection and confirm that samples in both subtypes are well-separated along the attribute vector axis (b). The
list on the right (c) shows genes that are most differentially expressed in one subtype, which can be exported (d) for further analysis.

Figure 12: Gender bias in word embeddings. Words are projected
onto an attribute vector for gendered names. Brushing the female
concept convex hull reveals words that reflect gender stereotypes.

tem reproduces insights into gender stereotypes in word embed-
dings [BCZ∗16a]. We then turn to the analysis of Google’s analogy
benchmark, and discuss how the quantitative test scores might ob-
scure important nuances in an embedding. In both scenarios, we
analyze the 10,000 most frequent words in the 50-, 100- and 300-
dimensional pre-trained GloVe embeddings [PSM14].

6.3.1. Gender Biases in Word Embeddings

We first demonstrate how users might use LSC to quickly replicate
findings on gender stereotypes in word embeddings. Bolukubasi
et al. [BCZ∗16a] quantify which words are closer to he versus she
in the embedding space. They compile a list of profession names
and project them onto two gender axes. We similarly define an at-
tribute vector from word pairs in the family category of Google’s
analogy benchmark, including king:queen, son:daughter and un-
cle:aunt. We then view the attribute vector projection (T6).

Next, we brush corresponding regions in the projected space to
explore words associated with each extreme of the attribute vector.
Figure 12 shows words within the brushed region inside the convex
hull of the female concept. Besides words that are gendered by defi-
nition (e.g., mother), other words (e.g., pink) reveal implicit stereo-
types in the training corpus, as these words are considered similar
due to frequent co-occurence with female names. Similarly, brush-
ing the region around the male convex hull produces stereotyped

words including director, mayor, victory, and hero. Words located
toward each horizontal extreme but far away from the attribute vec-
tor region are strongly associated with each gender, but less rele-
vant, for example male and female given names. While the previ-
ous approach [BCZ∗16a] involved manually choosing words prior
to visualizing their distribution, LSC allows us to easily explore and
identify interesting words from the visualized corpus. The design
choice to visualize attribute vectors on top of the projected data
points (S1) facilitates quick discovery of relevant words.

The projected view provides additional insights. The mass of all
words is unbalanced as the majority of the words are shifted toward
the male concept. This imbalance suggests a prevalence of accounts
associated with male in the training data, again indicating bias.

6.3.2. Analysis of Analogy Benchmark

We now turn to the analysis of Google’s analogy dataset [MYZ13],
one of the most widely used benchmarks for evaluating word em-
beddings. The dataset contains 14 groups, some of which are syn-
tactic (e.g., verbs and superlatives) while others assess semantic re-
lationships (e.g., countries and capitols). Each group contains sev-
eral dozen pairs of words. The test works by systematically taking
two pairs, performing attribute vector arithmetic on the first three
words, and assessing if the fourth word is the top nearest neigh-
bor. For example, given the pairs king:queen and son:daughter, the
test computes v = vec(king)− vec(son) + vec(queen) and counts
the answer as correct if vec(daughter) is the nearest neighbor of v.
Typically, people exclude words already in the query (i.e., king,
queen and son in the previous example) during the nearest neigh-
bor search. The test exhausts all possible combinations of pairs and
outputs the percentage of correct answers as a final score.

We use words in these analogy groups to define attribute vectors
in LSC. Figure 13 shows an attribute vector for the group contain-
ing present tense verbs and participles. We view the projection onto
the attribute vector axis (T6) and the distribution of pairwise cosine
similarity (S2) in multiple dimensions. In the 50-dimensional em-
bedding, the attribute vector appears less consistent visually: the
convex hulls overlap and the pairs are less parallel compared to the
other embeddings. The pairwise cosine distance plot further con-
firms this observation, as the effect size is smaller.
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Dimension = 50 Dimension = 100 Dimension = 300

(a)

(b)

Google’s analogy test score: 52.8% (317/600) Google’s analogy test score: 78.0% (468/600) Google’s analogy test score: 78.7% (472/600)

Figure 13: An attribute vector defining present tense verbs and participles in Google’s analogy test dataset. Both the appearance of projected
pairs (a) and the pair alignment statistics (b) agree with the analogy test scores.

(a) (b)
Figure 14: Original nearest neighbors of (a) slow and (b) dance,
and nearest neighbors after adding the present:participle attribute
vector (in the “answer” column).

Both the visual and statistical evaluation of attribute vector qual-
ity correlate with analogy test scores. As our quality assessments
indicate how consistent individual pairs are in direction, they imply
that the analogy test really measures linear regularities. Together,
these analyses demonstrate the utility of our novel features on as-
sessing relationship saliency (S2).

However, interactively exploring individual words within the at-
tribute vector show interesting cases that are overlooked by the
automated test procedure. In the following examples, we select a
word, apply the present:participle vector (T4), and examine the
nearest neighbors (T3) of both the original word and the answer.
As shown in Figure 14a, the original neighborhood of slow does
not contain the expected answer slowing. Applying the attribute
vector brings slowing into the neighborhood, but because of other
interfering words, it does not appear as the top choice. In contrast,
dancing is already the first nearest neighbor of dance (Figure 14b).
Applying the attribute vector has an insignificant effect on dancing,
but it will be counted as correct by the automated test. Another ex-
ample (figure in supplemental material) involves sing and singing.

Singing is originally the 3rd nearest neighbor of sing. Adding the
attribute vector improves its cosine similarity by 9% but does not
change its rank in the neighborhood, so this case will be counted
as incorrect. However, reversing the direction (i.e., subtract the at-
tribute vector from singing) makes the case correct because sing is
the 1st nearest neighbor excluding singing.

These examples demonstrate that the analogy test does not de-
pend solely on the “strength” of the linear relationship, but is con-
founded by the query word’s neighborhood. They further imply that
a summary score produced by the automated test oversimplifies po-
tential issues and obscures interesting nuances. Though the analogy
test result is a useful approximation of the quality of a word embed-
ding, interactive visual analysis enables additional insights.

7. Conclusion and Future Work

In this paper, we contribute methods for mapping meaningful se-
mantic dimensions of latent spaces. We surveyed the literature
across a range of research communities, brought together common
interpretation tasks, and integrated them in the LSC visual analy-
sis system. In addition to its general utility, LSC contributes novel
methods, including linear projection strategies to provide context,
visual and statistical methods to assess attribute vector uncertainty,
and techniques for comparing attribute vectors. With the support
of our system, we challenged existing scientific findings on can-
cer gene expression, and shed light on nuances overlooked by the
state-of-the-art word analogy benchmark in NLP.

Looking forward, our system could be extended to align the la-
tent space to semantic axes. Currently, our system enables users
to quickly discover relationships, define them as attribute vectors,
verify if they manifest as consistent linear structures, and assess
their quality. Given a set of orthogonal attribute vectors that encode
separate causal factors underlying data variations, we might use the
vectors as a basis to re-orient the space. This approach is inline with
the goal of disentangled representation [BCV13], where the latent
space allocates a separate dimension for each semantic attribute.
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The source code of LSC is available at the link: https://
github.com/uwdata/latent-space-cartography.
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